Первоначальный расчет Целевого уровня буфера

Хотелось бы напомнить одно важное правило, которым мы руководствуемся при расчете всех значений в решениях Теории ограничений: лучше быть приблизительно правым, чем абсолютно точно ошибаться. Это означает, что не следует стремиться к абсолютной точности рассчитываемых значений. Нужно учитывать, что все эти значения носят вероятностный характер и, следовательно, неизбежно имеют некоторую естественную и неустранимую погрешность. Лично я руководствуюсь правилом, что нужно опираться на достаточно пессимистические сценарии при оценке сроков пополнения и на обоснованно оптимистические при расчете спроса. Со мной можно и нужно не соглашаться, но я считаю необходимым обозначить основную свою исходную посылку: нехватка товара гораздо вреднее, нежели его незначительный избыток, особенно на старте проекта, когда все исходные данные ненадежны и недостоверны.

Итак, теперь, когда у нас есть рассчитанный надежный срок пополнения, мы можем приступать к расчету Целевого уровня буфера.

Если мы обратимся к типовым Деревьям Стратегии и Тактики, вынесенным в дополнение, то мы увидим там рекомендацию по расчету:

Целевой уровень запасов (Целевой уровень буфера) равен среднедневному потреблению за последний месяц, умноженному на надежный срок пополнения в днях, плюс три сигмы вариации потребления за срок пополнения и умноженному на коэффициент паранойи. В случае нормального распределения (а три сигмы говорят о гипотезе нормального распределения) отклонение в три сигмы составляет коэффициент 1,5. То есть мы получаем формулу:

ЦелевойУровеньБуфера = СреднедневноеПотребление * НадежныйСрокПополнения * 1,5

Если речь идет о ситуации, когда мы рассматриваем товар с относительно регулярным потреблением, большим количеством наблюдения, то гипотеза о нормальном распределении имеет все основания быть подтвержденной, и эта формула дает достаточно надежный расчет. Но…

Например, товар у нас был в наличии всего несколько дней месяца. Следует ли нам при расчете среднего потребления брать только дни наличия или считать среднее потребление за весь период? В последнем случае это приведет к явному занижению уровня спроса, но если взять в расчет среднее потребление только в дни наличия, то это может привести к еще очень большому завышению расчетной величины ЦУБ. В ситуации с короткими сроками пополнения — это не критично, но что делать, если ваши сроки пополнения превышают полгода? Тут требуется более универсальное решение.

В ситуации, когда:

  • у нас явно присутствует сезонность в спросе;
  • были длительные перерывы в наличии товара или вообще уровень наличия данного товара был крайне низкий;
  • у нас длительные сроки пополнения (из моего личного опыта длительным можно считать срок пополнения более 30 дней — Д.Е.);

…расчет по этой формуле способен создать нам ненужные проблемы, которые потом придется исправлять с помощью Динамического управления буфером.

Кроме того, стоит учесть, что человеческий мозг визуальную информацию обрабатывает на порядки быстрее и качественнее, нежели цифровую или табличную.

Когда мы столкнулись в реальной практике внедрений с этой ситуацией, то мой коллега Сергей Зайцев предложил другой способ расчета, основанный на определении Целевого уровня буфера и наглядной визуализации, который и был нами реализован программными средствами и с тех пор стал основным в моей практике.

Итак:

Целевой уровень буфера — это максимальное потребление товара в данном месте хранения за надежный период пополнения.

Это можно представить в виде графика, который скользящим окном, равным надежному сроку пополнения, суммирует потребление на каждую дату, отражая, таким образом, поведение аккумулированного спроса за период потребления.

Этот способ также не защищает вас на все 100% от искажений. Например, в анализируемом периоде могла находиться ситуация с аномально большой продажей, и если вы положитесь на автоматический расчет величины ЦУБ — он будет завышен. Но есть и плюсы:

  • наглядно видно влияние сезонности и трендов изменения спроса;
  • если изначально задать уровень надежности, который вы хотите обеспечивать, в формате персентиля надежности (например, 0,95, что означает, что вы хотите гарантированно обслуживать 95% обычного спроса), то можно отбрасывать пики с помощью автоматизированной обработки.

Для примера приведу несколько графиков из реальных проектов.

Вот, например, достаточно хорошо продающаяся позиция:

А вот ее противоположность: редко продающаяся, с большими всплесками:

А вот пример аномального выброса продаж, когда требуется принятие управленческого решения:


Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.